Diaz M. Shaffila, Siwi Indarti, Witjaksono Witjaksono, Nugroho S. Putra


Applying cow dung and solarizing the soil are two methods that may be used to improve soil fertility and inhibit soil-borne diseases. The purpose of this study was to ascertain how cow manure application and soil solarization affected the density of nematodes in shallot. An investigation was conducted using a single-factor Randomized Complete Block Design (RCBD) in Gotakan Village, Panjatan District, Kulon Progo Regency, and Yogyakarta Special Region, Indonesia. The interventions included three types of treatment with five replications each: (1) solarization + cow manure, (2) cow manure, and (3) control. Three phases of nematode abundance observations were made: prior to application, following application, and right after harvest. Principal Component Analysis (PCA) was used for evaluating the data in regard to nematode feeding behavior and their abundance. Principal Component Analysis (PCA), which was developed on nematode feeding behavior, was used to examine the data. The results of the main component analysis at each observation stage based on the feeding behavior have an eigenvalue > 1 and a cumulative diversity value of 100%, which is divided into 2 main components: PC1 and PC2. The abundance of each feeding behaviors nematodes were able to be decreased by combination of soil solarization and cow dung application, especially plant parasitic nematodes and non-plant parasitic nematodes such as, fungal feeder, bacterial feeder, predatory nematodes, and omnivores was not significantly reduced. The application of cow dung enhanced the number of fungal feeder and bacterial feeder. The results of this investigation should give more insight into how cow manure treatment and soil solarization combine to impact the nematode abundance in shallot. This research is important for future agricultural and soil management implications and could be a potential combined treatment for controlling plant parasitic nematodes.


Cow manure, feeding behavior, nematode abundance, soil solarization

Full Text:



Abd-Elgawad, M.M.M., I.E. Elshahawy and F. Abd-El-Kareem. 2019. Efficacy of soil solarization on black root rot disease and speculation on its leverage on nematodes and weeds of strawberry in Egypt. Bulletin of the National Research Center, 43(1): 1-7. https://doi.org/10.1186/s42269-019-0236-1

Asyiah, I., D. Tristaningtyas, J. Prihatin, S. Winarso, L. Widjayanthi, D. Nugroho, K. Firmansyah and A. Pradana. 2022. The efficacy of cost-effective bionematicide against potato cyst nematode Globodera rostochiensis. Pakistan Journal of Phytopathology, 34(2): 173-185. https://doi.org/10.33866/phytopathol.034.02.0789

Balakrishna, A.N., R. Lakshmipathy, D.J. Bagyaraj and R. Ashwin. 2015. Effect of soil solarization on native AM fungi and microbial biomass. Agricural Research, 4: 196–201. https://doi.org/10.1007/s40003-015-0156-8.

Becquer, A., J. Trap, U. Irshad, M.A. Ali and P. Claude. 2014. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science, 5: 548. https://doi.org/10.3389/fpls.2014.00548

Bogale, M., A. Baniya and P. DiGennaro. 2020. Nematode identification techniques and recent advances. Plants, 9(10):1260. https://doi.org/10.3390/plants9101260

Butler, D. M., N. Kokalis-Burelle, J. Muramoto, C. Shennan, T.G. McCollum and E.N. Rosskopf. 2012. Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised-bed vegetable production. Crop Protection, 39: 33–40. https://doi.org/10.1016/j.cropro.2012.03.019

Calderón, K., A. Spor,M.C. Breuil, D. Bru, F. Bizouard, C. Violle, R.L. Banard and L. Philippot. 2017. Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME Journal, 11: 272–283. https://doi.org/10.1038/ismej.2016.86

Candido, V., T. D’Addabbo, M. Basile, D. Castronuovo and V. Miccolis. 2008. Greenhouse soil solarization: effect on weeds, nematodes and yield of tomato and melon. Agronomy for Sustainable Development, 28(2): 221–230. https://doi.org/10.1051/agro:2007053

Castronuovo, D., V. De Feo, L. De Martino, L. Cardone, R. Sica, L. Caputo, G. Amato, V. Candido. 2023. Yield response and antioxidant activity of greenhouse organic pumpkin (Cucurbita moschata Duch.) as affected by soil solarization and biofumigation. Horticulturae, 9, 427. https://doi.org/10.3390/horticulturae9040427

Chauvin, C., M. Dorel, C. Villenave, J. Roger-Estrade, L. Thuries and J.M. Risède. 2015. Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil. Applied Soil Ecology, 96: 131–140. https://doi.org/10.1016/j.apsoil.2015.07.013

Choudhary F., A. Bhardwaj, I. Sayeed, S.A. Rather, M.A.H. Khan and A.A. Shah. 2023. Elevational patterns of soil nematode diversity, community structure and metabolic footprint in the trikuta mountains of Northwestern Himalaya. Frontiers In Forests and Global Change, 6: 113219. https://doi.org/10.3389/ffgc.2023.1135219

Damaryono, K.S., S. Handayani. S.N.H. Utami and S. Indarti. 2018. Soil physical properties and abundance of soil fauna in conventional and organic rice field. IOP Conf Ser: Earth Environmental Sciences, 215:012009. ttps://doi.org/10.1088/1755-1315/215/1/012009

D’Addabbo, T., N. Sasanelli, N. Greco, V. Stea and A. Brandonisio. 2005. Effect of water, soil temperatures, and exposure times on the survival of the sugar beet cyst nematode, Heterodera Schachtii. Phytopathology, 95(4): 339–344. https://doi.org/10.1094/PHYTO-95-0339

De Corato, U. 2020. Soil microbiota manipulation and its role in suppressing soil-borne plant pathogens in organic farming systems under the light of microbiome-assisted strategies. Chemical and Biological Technologies in Agriculture, 7(1): 17. https://doi.org/10.1186/s40538-020-00183-7

Di Mola, I., V. Ventorino, E. Cozzolino, L. Ottaiano, I. Romano, L.G. Duri, O. Pepe and M. Mori. 2021. Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and microbial community response to soil management. Applied Soil Ecology, 163: 103921. https://doi.org/10.1016/j.apsoil.2021.103921

El-Ashry, R. 2021. Application of animal manure and plant growth- promoting rhizobacteria as effective tools to control soil nematode population and increase crop yield in grapevine orchards. Egyptian Journal of Agronematology, 20(1): 34-52. doi: 10.21608/ejaj.2021.141311

El-Deeb, A., R. El-Ashry and A. El-Marzoky. 2018. Nematicidal activities of certain animal manures and biopesticides against Meloidogyne incognita infecting cucurbit plants under greenhouse conditions. Journal of Plant Protection and Pathology, 9(4): 265-271. DOI: 10.21608/jppp.2018.41405

Elkarmi, A., K. Abu-Elteen and A. Al-Karmi. 2008. Disinfecting contaminated water with natural solar radiation utilizing a disinfection solar reactor in a semi-arid region. Jordan Journal of Biological Sciences, 1(2): 47-45.

El Metwally M., R.M. El Ashry and A. El Aal. 2019. Effect of chemical nematicides, chicken manure and biocontrol agents as a control method for certain plant parasitic nematodes infecting orchards under field conditions in Sharkia Governorate, Egypt. Journal of Plant Protection and Pathology, 10(1): 1-6.

Fard, H. K. and N. Doryanizadeh. 2022. Application of chicken manure and summer plowing to control root-knot nematode Meloidogyne javanica in muskmelon, Cucumis melo var. inodorus, farms. Journal of Crop Protection, 11(4): 507–514. https://doi.org/http://jcp.modares.ac.ir/article-3-59908-en.html

Forge, T. A., S. Bittman and C.G. Kowalenko. 2005. Responses of grassland soil nematodes and protozoa to multi-year and single-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry, 37(10): 1751–1762. https://doi.org/10.1016/j.soilbio.2004.11.013

Gebreegziher, W.G., A. Kidanu Alemu, K. Zebib and Y. Tarekegn. 2023. Application of soil solarization and manure, individually and in combination, control broomrape infestation and improve tomato yield. International Journal of Vegetable Science, 29(3): 205-214, DOI: 10.1080/19315260.2023.2171553

Geisseler D. and K.M. Scow. 2014. Long-term effects of mineral fertilizers on soil microorganisms–a review. Soil Biology and Biochemistry, 75: 54-63. https://doi.org/10.1016/j.soilbio.2014.03.023

Gilardi, G., S. Demarchi, M.L. Gullino and A. Garibaldi. 2014. Effect of simulated soil solarization and organic amendments on fusarium wilt of rocket and basil under controlled conditions. Journal of Phytopathology, 162(9): 557–566. https://doi.org/10.1111/jph.12223

Gill, H. K., I.S. Aujla, L. De Bellis and A. Luvisi. 2017. The role of soil solarization in india: how an unnoticed practice could support pest control. Frontiers in Plant Science, 8: 1515. https://doi.org/10.3389/fpls.2017.01515

Hartmann, M., B. Frey, J. Mayer, P. Mäder and F. Widmer. 2015. Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9(5): 1177–1194. https://doi.org/10.1038/ismej.2014.210

Ilieva-Makulec, K., B. Bjarnadottir and B.D. Sigurdsson. 2014. Nematode diversity, abundance and community structure 50 years after the formation of the volcanic island of Surtsey. Biogeosciences Discuss, 11: 14239–14267, https://doi.org/10.5194/bgd-11-14239-2014, 2014.

Indarti, S., T. Taryono, C.W. Purnomo, A.S. Wulandari and R. Maharani. 2023. Abundance and diversity of plant parasitic nematodes associated with vegetable cultivation on various types of organic fertilizers. Biodiversitas, 24(2): 1010-1016.

Isnaini, N., S. Indarti, D. Widianto, T. Nuringtyas, N. Arofatullah and I. Prijambada. 2023. Biocontrol potential of nematode-targeting fungi from coffee plant rhizosphere against Pratylenchus coffeae root lesion nematode. Pakistan Journal of Phytopathology, 35(2): 451-458. doi:https://doi.org/10.33866/phytopathol.035.02.1041

Jauregi, L., A. González, C. Garbisu and L. Epelde. 2023. Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems. Scientific Reports, 13(1): 863.

Kanwar, R.S., J.A. Patil and S. Yadav. 2021. Prospects of using predatory nematodes in biological control for plant parasitic nematodes–a review. Biological Control, 160: 104668.

Kaya, H. K. and S.P. Stock. 1997. Techniques in insect nematology. In Manual of Techniques in Insect Pathology. Elsevier. https://doi.org/ 10.1016/B978-012432555-5/50016-6

Khan, Z. and Y.H. Kim. 2005. The predatory nematode, Mononchoides fortidens (Nematoda: Diplogasterida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil. Biological Control, 35(1): 78–82. https://doi.org/10.1016/j.biocontrol.2005.05.015

Khan, Z. and Y.H. Kim. 2007. A review on the role of predatory soil nematodes in the biological control of plant parasitic nematodes. Applied Soil Ecology, 35(2): 370–379. https://doi.org/ 10.1016/j.apsoil.2006.07.007

Khanum, T.A., N. Mehmood and N. Khatoon. 2022. Nematodes as biological indicators of soil quality in the agroecosystems. Nematodes–Recent Advances, Management and New Perspectives, 1-12.

Khatamidoost, Z., S. Jamali, M. Moradi and R.S. Riseh. 2015. Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes on pistachios. Biocontrol Science and Technology, 25(3): 291-301. https://doi.org/ 10.1080/09583157.2014.973369

Kokalis-Burelle, N., E.N. Rosskopf, D.M. Butler, S.A. Fennimore and J. Holzinger. 2016. Evaluation of steam and soil solarization for Meloidogyne arenaria control in Florida Floriculture Crops. Journal of Nematology, 48(3): 138–192. https://doi.org/10.21307/jofnem-2017-026

Kouakou, Y., K. Kra and H. Diallo. 2023. Nematicidal effects of the number of dried castor leaf product applications on the pathological activities and population dynamics of root-knot and root-lesion nematodes on water yam. Pakistan Journal of Phytopathology, 35(2): 201-214. doi:https://doi.org/10.33866/phytopathol.035.02.0911

Liu, T., X. Chen, F. Hu, W. Ran, Q. Shen, H. Li and J.K. Whalen. 2016. Carbon-rich organic fertilizers to increase soil biodiversity: evidence from a meta-analysis of nematode communities. Agriculture, Ecosystems and Environment, 232: 199-207. https://doi.org/10.1016/j.agee.2016.07.015

Majdi, N., W. Traunspurger, H. Fueser, B. Gansfort. P. Laffaille and A. Maire. 2019. Effects of a broad range of experimental temperatures on the population growth and body-size of five species of free-living nematodes. Journal of Thermal Biology, 80: 21–36. https://doi.org/10.1016/j.jtherbio.2018.12.010

Martínez-Escudero, C.M., I. Garrido, P. Flores, P. Hellín, F. Contreras-López and J. Fenoll. 2022. Remediation of triazole, anilinopyrimidine, strobilurin and neonicotinoid pesticides in polluted soil using ozonation and solarization. Journal of Environmental Management, 310: 114781.https://doi.org/10.1016/j.jenvman.2022.114781

Melero-Vara, J.M., C.J. López-Herrera, M.J. Basallote-Ureba, A.M. Prados, M.D. Vela, F. J. Macias, E. Flor-Peregrín and M. Talavera. 2012. Use of poultry manure combined with soil solarization as a control method for Meloidogyne incognita in carnation. Plant Disease, 96(7): 990-996. https://doi.org/10.1094/PDIS-01-12-0080-RE

Muñoz-Rojas, M., F. Dadzie and N. Machado De Lima. 2023. Emerging soil microbial-based strategies and seed enhancement technologies for restoring biodiverse degraded ecosystems, EGU General Assembly 2023, Vienna, Austria.

Nahar, M. S., P.S. Grewal, S.A. Miller, D. Stinner, B.R. Stinner, M.D. Kleinhenz, A. Wszelaki and D. Doohan. 2006. Differential effects of raw and composted manure on nematode community, and its indicative value for soil microbial, physical and chemical properties. Applied Soil Ecology, 34(2–3): 140–151. https://doi.org/10.1016/j.apsoil.2006.03.011

Nielsen, U. N., E. Ayres, D.H. Wall, G. Li, R.D. Bardgett, T. Wu and J.R. Garey. 2014. Global‐scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23(9): 968–978. https://doi.org/10.1111/geb.12177

Nisa, R.U., A.Y. Tantray, N. Kouser, K.A. Allie, S.M. Wani, S.A. Alamri, M.N. Alyemeni, L. Wijaya, and A.A. Shah. 2021. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences, 28(5): 3049-3059. https://doi.org/10.1016/j.sjbs.2021.02.046

Pavlović,S., Z. Girek, B. Zečević, S. Adžić, J. Damnjanović, M. Brdar Jokanović and M. Ugrinović. 2019. Effect of application of soil solarization on biological control of soil pathogens and vegetable yield in greenhouse. Selekcija I Semenarstvo, 25(2): 31-40.

Putri, A. H., S. Indarti and T. Harjaka. 2021. Diversity and abundance of nematodes in soil treated with solarization treatments. Biodiversitas Journal of Biological Diversity, 22(7). https://doi.org/10.13057/biodiv/d220708

Ramdan, E.P., A. Afriani, A. Hanif, C. Wati, N. Nurholis, D. Astuti and W. Widodo. 2022. Peran solarisasi tanah terhadap pertumbuhan patogen tular tanah dan populasi mikroba tanah. Agro Research Journal, 6(1): 27-31.

Sahu, N., D. Vasu, A. Sahu, N. Lal and S.K. Singh. 2017. Strength of microbes in nutrient cycling: a key to soil health. in agriculturally important microbes for sustainable agriculture. Springer Singapore. https://doi.org/10.1007/978-981-10-5589-8_4

Shaw, G.T.W., C.W. Weng, C.Y. Chen, F.C.H. Weng and D. Wang. 2019. A systematic approach re-analyzing the effects of temperature disturbance on the microbial community of mesophilic anaerobic digestion. Scientific Reports, 9(1): 6560. https://doi.org/10.1038/s41598-019-42987-0

Shofiyani, A. and G.P. Budi. 2014. The effectiveness of soil solarization in suppressing the development of Fusarium fungi in infected banana plantations; LPPM National Seminar Proceedings, Indonesian.

Steel, H., E. de la Peña, P. Fonderie, K. Willekens, G. Borgonie and W. Bert. 2010. Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity. Pedobiologia, 53(3): 181–190. https://doi.org/10.1016/j.pedobi.2009.09.003

Stirling, G.R. 2023. Plant and soil nematodes: Integrated nematode management. Fact sheet PSN 011.

Suyadi, S. and R. Rosfiansyah. 2017. The role of plant parasitic nematodes on productivity reduction of banana and tomato in East Kalimantan, Indonesia. Asian Journal of Agriculture, 1(1): 40–45. https://doi.org/10.13057/asianjagric/g010108

Utami, A. I., S.N.H. Utami and S. Indarti. 2017. Influence of cow and chicken manure on soil fauna abundance and N uptake by rice in conversion from conventional to organic farming system. Proceeding of the 1st International Conference on Tropical Agriculture, 23–39. https://doi.org/ 10.1007/978-3-319-60363-6_3

Wang, F., Y.A. Tong, J.S. Zhang, P.C. Gao and J.N. Coffie. 2013. Effects of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China. Plant, Soil and Environment, 59(4): 162–168. https://doi.org/10.17221/702/2012-PSE

Wang X., L. Zhang, J. Gu, Y. Feng, K. He and H. Jiang. 2023. Effects of soil solarization combined with manure-amended on soil args and microbial communities during summer fallow. Environmental Pollution: 121950.

Zafar, M.I., A. Khalid, S. Kali, F. Khan, M. Tahir, M. Ali and A. Siddiqa. 2022. Organic amendments as an ecofriendly substitute of carbofuran for the suppression of nematodes associated with Malus pumila. South African Journal of Botany, 144: 187-193. https://doi.org/10.1016/j.sajb.2021.09.006

Zhai, Y., Z. Shao, M. Cai, L. Zheng, G. Li, D. Huang, W. Cheng, L.S. Thomashow, D.M. Weller, Z. Yu, and J. Zhang. 2018. Multiple modes of nematode control by volatiles of Pseudomonas putida 1a00316 from antarctic soil against Meloidogyne incognita. Frontiers In Microbiology, 9: 253. https://doi.org/10.3389/fmicb.2018.00253

Zhang, B., H. Wang, S. Yao and L. Bi. 2013. Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana. Soil Biology and Biochemistry, 57: 556–567. https://doi.org/10.1016/j.soilbio.2012.07.024

Zhao, J., D.A. Neher, S. Fu, Z. Li and K. Wang. 2013. Non-target effects of herbicides on soil nematode assemblages. Pest Management Science, 69(6): 679–684. https://doi.org/10.1002/ps.3505

Zhao, J., F. Wang, J. Li, B. Zou, X. Wang, Z. Li and S. Fu. 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry, 75: 1–10. https://doi.org/10.1016/j.soilbio.2014.03.019

Zhao, D., Y. Wang, L. Wen, H. Qu, Z. Zhang, H. Zhang, Y. Jia, J. Wang, Y. Feng, Y. Li, F. Yang, F and F. Pan. 2022. Response of soil nematode community structure and function to monocultures of pumpkin and melon. Life, 12(1): 1–15. https://doi.org/10.3390/life12010102

DOI: https://doi.org/10.33866/phytopathol.036.01.1062


  • There are currently no refbacks.

Copyright (c) 2024 Diaz Mutiara Shaffila, Siwi Indarti, Witjaksono Witjaksono, Nugroho Susetya Putra

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.