BACTERIA IN FUNGAL CULTURES ISOLATED FROM THE SOLANACEAE FAMILY PLANTS

Vladislav A. Platonov, Sergey N. Elansky, Elena M. Chudinova

Abstract


A study of the presence and diversity of bacteria in cultures of fungi isolated from plants of the Solanaceae family (potato and tomato) was carried out using PCR with bacterial primers, followed by sequencing of the amplicons. A total of 83 strains were tested and bacteria were found in most of them. Bacteria of the following taxa were found in fungi: Ceratobasidiumsp. (Delftiasp.), Cladosporiumcladosporioides (Paenibacillussp.), Ilyonectria crassa (Enterobacter sp.), Fusarium avenaceum (Rahnellasp., Stenotrophomonassp.), F. equiseti (Pseudomonas sp., Klebsiella sp., Pseudomonas sp., Pantoea sp., Stenotrophomonas sp.), F. graminearum (Stenotrophomonas sp.), F. merismoides (Luteolibactersp.), F. merkxianum (Stenotrophomonas sp.), F. oxysporum (Kosakonia sp., Achromobacter sp., Stenotrophomonas sp., Pantoea sp., Delftia sp., Lelliottia sp., Pseudomonas sp.), F. torulosum (Flavobacterium sp.), Orbilia oligospora (Lacrimisporasp.), Plectosphaerella cucumerina (Pantoeasp.), Pyrenochaetasp. (Herbaspirillum sp.), andRhizoctonia solani (Achromobacter sp.). No correlation was found between specific bacterial and fungal species. The impact of the identified bacteria on plants can vary, from involvement in pathogenesis to stimulating of growth, and needs further study. Bacteria associated with fungi can be used in the production of biological products with protective and growth-regulating effects.Combining such bacteria with non-pathogenic fungi will increase their survival; the resulting fungal-bacterial associations can be used to create growth-stimulating biological products with a long shelf life.The possible presence of dangerous bacteria in plant pathogenic fungi should be considered when developing plant protection measures.


Keywords


fungal-bacterial complexes, pathogenic bacteria, plant growth-promoting bacteria, microbial communities

Full Text:

PDF

References


Bastías, D. A., L. J. Johnson, S. D. Card. 2020. Symbiotic bacteria of plant-associated fungi: friends or foes? Current Opinion in Plant Biology, 56: 1-8.

Braña, V., C. Cagide and M. A. Morel. 2016. The sustainable use of Delftia in agriculture, bioremediation, and bioproducts synthesis. In: S. Castro-Sowinski, (eds.), Microbial models: from environmental to industrial sustainability. SpringerLink, USA. pp. 227-247.

Elansky, S. N., E. M. Chudinova, A. S. Elansky, M. O. Kah, D. A. Sandzhieva, B. A. Mukabenova and A. G. Dedov. 2022. Microorganisms in spent water-miscible metalworking fluids as a resource of strains for their disposal. Journal of Cleaner Production, 350: 131438.

Elsharkawy, M. M., F. O. Alotibi, A. A. Al-Askar, M. Adnan, M. Kamran, A. Abdelkhalek, S. I. Behiry, M. H. Saleem, A. A. Ahmad and A. A. Khedr. 2022. Systemic resistance induction of potato and tobacco plants against potato virus Y by Klebsiella oxytoca. Life, 12: 1521.

Espinosa, J. G., Y. F. H. Gómez, Y. J. Martínez, F. J. F. Gallardo, J. R. P. Aguilar, M. Ã. R. López, J. L. A. Gómez, C. S. Gutierrez, J. A. R. Morales, M. C. G. Gutiérrez, A. A. Reyes, E. Ã. Hidalgo, J. N. Ramírez, J. L. H. Flores and J. C. Guillén. 2023. Kosakonia cowanii Ch1 isolated from Mexican chili powder reveals growth inhibition of phytopathogenic fungi. Microorganisms, 11(7): 1758.

Feng, Y., D. Shen and W. Song. 2006. Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. Journal of Applied Microbiology, 100: 938-945.

Han, Y., X. Gao, G. Huangm, Y. Chang, H. Han, J. Zhu and B. Zhang. 2023. Kosakonia cowanii, a new bacterial pathogen affecting foxtail millet (Setaria italica [L.] P. Beauv.) in China. Microbial Pathogenesis, 181: 106201.

Hou, Y., Y. Zhang, L. Yu, X. Ding, L. Liu, L. Wang and S. Huang. 2020. First report of Pseudomonas oryzihabitans causing rice panicle blight and grain discoloration in China. Plant disease, 104(11): 3055.

Krawczyk, K. and N. Borodynko-Filas. 2020. Kosakonia cowanii as the new bacterial pathogen affecting soybean (glycine max willd.). European Journal of Plant Pathology, 157: 173-183.

Lane, D. J. 1991. 16S/23S rRNA sequencing. In: E. Stackebrandt and M. Goodfellow, (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York. pp. 115-175.

Lee, H. B., J. P. Hong and S. B. Kim. 2010. First report of leaf blight caused by Pantoea agglomerans on rice in Korea. Plant Disease, 94: 1372.

Li, J., G. Zhou, T. Wang, T. Lin, Y. Wang, P. Zhu, L. Xu and G. Ma. 2021. First report of Pseudomonas oryzihabitans causing stem and leaf rot on muskmelon in China. Plant Disease. 105(9): 2713.

Monteiro, R. A., E. Balsanelli, R. Wassem, A. M. Marin, L. C. C. Brusamarello-Santos, M. A. Schmidt, M. Z. Tadra-Sfeir, V. C. S. Pankievicz, L. M. Cruz, L. S. Chubatsu, F. O. Pedrosa and E. M. Souza. 2012. Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant and Soil, 356: 175-196.

O'Donnell, K., H. C. Kistler, E. Cigelnik and R. C. Ploetz. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. In: Proceedings of the National Academy of Sciences, 95: 2044-2049.

Okrasińska, A., A. Bokus, K. Duk, A. Gęsiorska, B. Sokołowska, A. Miłobędzka, M. Wrzosek and J. Pawłowska. 2021. New endohyphal relationships between Mucoromycota and Burkholderiaceae representatives. Applied and Environmental Microbiology, 87(7): e02707-20.

Osei, R., C. Yang, L. Cui, T. Ma, Z. Li and S. Boamah. 2022. Isolation, identification, and pathogenicity of Lelliottia amnigena causing soft rot of potato tuber in China. Microbial Pathogenesis, 164: 105441.

Partida-Martinez, L. and C. Hertweck. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature, 437: 884-888.

Platonov, V. A., E. M. Chudinova and S. N. Elansky. 2024. Adaptation of plant protection technology considering fungal-bacterial associations. RUDN Journal of Agronomy and Animal Industries, 19(1): 122-127.

Preston, G. M. 2004. Plant perceptions of plant growth-promoting Pseudomonas. Biological Sciences, 359: 907-918.

Robinson, A. J., G. L. House, D. P. Morales, J. M. Kelliher, V. Gallegos-Graves, E. S. LeBrun, K. W. Davenport, F. Palmieri, A. Lohberger, D. Bregnard, A. Estoppey, M. Buffi, C. Paul, T. Junier, V. Hervé, G. Cailleau, S. Lupini, H. N. Nguyen, A. O. Zheng, L. J. Gimenes, S. Bindschedller, D. F. Rodrigues, J. H. Werner, J. D. Young, P. Junier and P. S. G. Chain. 2021. Widespread bacterial diversity within the bacteriome of fungi. Communications Biology, 4(1): 1168.

Santos, R. M. and E. C. Rigobelo. 2021. Growth-promoting potential of Rhizobacteria isolated from sugarcane. Frontiers in Sustainable Food Systems, 5: 596269.

Singh, R. P. and P. N. Jha. 2017. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology, 8: 1945.

Spraker, J. E., L. M. Sanchez, T. M. Lowe, P. C. Dorrestein, N. P. Keller. 2016. Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues. The ISME Journal, 10: 2317-2330.

Valdivia, R. H. and J. Heitman. 2007. Endosymbiosis: the evil within. Current Biology, 17(11): 408-410.

Venkatesh, N., C. Greco, M. T. Drott, M. J. Koss, I. Ludwikoski, N. M. Keller and N. P. Keller. 2022. Bacterial hitchhikers derive benefits from fungal housing. Current Biology, 32(7):1523-1533.

White, T. J., T. Bruns, S. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, (eds.), PCR protocols: a guide to methods and applications, Academic Press, New York, USA. pp. 315-322.

Zhang, C., M. G. A. V. D. Heijden, B. K. Dodds, T. B. Nguyen, J. Spooren, A. Valzano-Held, M. Cosme and R. L. Berendsen. 2024. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. Microbiome, 12:313.




DOI: https://doi.org/10.33866/phytopathol.036.01.1106

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Vladislav A Platonov, Sergey N Elansky, Elena M Chudinova

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.
 Â