NATURAL PESTICIDAL COMPOUNDS OF EUPHORBIA PROSTRATA

Malik F. H. Ferdosi, Iqra H. Khan, Arshad Javaid, Muhammad Nadeem, Ayesha Munir

Abstract


This study was carried out to analyze the phytochemical profile of Euphorbia prostrata Aiton through GC-MS and identification of possible antifungal, antibacterial and other pesticidal compounds through literature survey. Whole plant material of the weed was collected from Lahore, Pakistan and shade dried followed by two-week extraction in ethyl acetate. The filtrates were analyzed by GC-MS that showed the presence of 19 compounds. The major compound in the extract was 9,19-cyclolanost-24-en-3-ol, (3β)- (24.62%) followed by 9,19-cyclolanostan-3-ol, 24-methylene-, (3β)- (19.51%) and γ-sitosterol (12.51%). Other compounds were phytol (8.11%), n-hexadecanoic acid (6.15%), 9,12,15-octadecatrienoic acid, (Z,Z,Z)- (4.90%), neophytadiene (4.88%), cyclohexane, 1,3,5-triphenyl- (3.71%), hexadecanoic acid, ethyl ester (3.04%), phenol, 2,2'-methylenebis[6-(1,1-dimethylethyl)-4-methyl- (2.42%), octadecanoic acid, ethyl ester (2.24%), octacosane (2.11%), 1-heptacosanol (1.71%), stigmasta-5,24(28)-dien-3-ol, (3β,24Z)- (1.71%), 9,12,15-octadecatrienoic acid, ethyl ester, (Z,Z,Z)- (1.29%), oxirane, hexadecyl- (1.21), 9,12-octadecadienoic acid (Z,Z)- (1.05%), Z-8-methyl-9-tetradecenoic acid (1.01%), and 9-octadecyne (0.76%). Literature survey revealed that eight compounds possess antibacterial, antifungal, nematicidal and/or insecticidal properties. Most of the pesticidal compounds were antibacterial in nature.


Keywords


Euphorbiaceae, GC-MS analysis, Pakistan, Prostrate spurge, Wee

Full Text:

PDF

References


Ahemad, M. and M. S. Khan. 2013. Pesticides as antagonists of rhizobia and the legume-Rhizobium symbiosis: a paradigmatic and mechanistic outlook. Biochemistry & Molecular Biology, 1: 63-75.

Ahmad, M., R. A. Khan, F. U. Khan, N. A. Khan, M. S. Shah and M. R. Khan. 2011. Antioxidant and antibacterial activity of crude methanolic extract of Euphorbia prostrata collected from District Bannu (Pakistan). African Journal of Pharmacy and Pharmacology, 5: 1175-1178.

Ahmed, S., M. A. Siddique, M. Rahman, M. L. Bari and S. Ferdousi. 2019. A study on the prevalence of heavy metals, pesticides, and microbial contaminants and antibiotics resistance pathogens in raw salad vegetables sold in Dhaka, Bangladesh. Heliyon, 5: e01205.

Ali, A., A. Javaid, A. Shoaib and I. H. Khan. 2020. Effect of soil amendment with Chenopodium album dry biomass and two Trichoderma species on growth of chickpea var. Noor 2009 in Sclerotium rolfsii contaminated soil. Egyptian Journal of Biological Pest Control, 30: 1-9.

Alsaffar, D. F., A. Yaseen, R. Mahmud and N. H. K. A. Aziz. 2021. Wound Healing Studies of Selected Euphorbia Species: A Review. Annals of the Romanian Society for Cell Biology, 25: 15542-15555.

Ashwin, P., K. Kunal and J. Sagar. 2015. Euphorbia Prostrata-a clinically proven drug in hemorrhoids-multiple pharmacological actions targeting pathological processes. International Journal of Medical and Health Sciences, 4: 269-273.

Banaras, S., A. Javaid and A. Shoaib. 2020. Non-Chemical Control of Charcoal Rot of Urdbean by Sonchus oleraceous Application. Planta daninha, 38: e020216088.

Banaras, S., A. Javaid and I. H. Khan. 2021. Bioassays Guided Fractionation of Ageratum conyzoides Extract for the Identification of Natural Antifungal Compounds against Macrophomina phaseolina. International Journal of Agriculture & Biology, 25: 761-767.

Baniadam, S., M. R. Rahiminejad, M. Ghannadian, H. Saeidi, A. M. Ayatollahi and M. Aghaei. 2014. Cycloartane triterpenoids from Euphorbia macrostegia with their cytotoxicity against MDA-MB48 and MCF-7 cancer cell lines. Iranian Journal of Pharmaceutical Research, 13: 135.

Casillas-Vargas, G., C. Ocasio-Malavé, S. Medina, C. Morales-Guzmán, R. G. Del Valle, N. M. Carballeira and D. J. Sanabria-Ríos. 2021. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents. Progress in lipid research: 101093.

Ceyhan-Güvensen, N. and D. Keskin. 2016. Chemical content and antimicrobial properties of three different extracts of Mentha pulegium leaves from Mugla Region, Turkey Journal of Environmental Biology, 37: 1341-1346.

Chudasama, R., N. Dhanani, R. Amrutiya, R. Chandni, G. Jayanthi and K. Karthikeyan. 2018. Screening of selected plants from semi-arid region for its phytochemical constituents and antimicrobial activity. Journal of Pharmacognosy and Phytochemistry, 7: 2983-2988.

Daam, M. A., S. Chelinho, J. C. Niemeyer, O. J. Owojori, P. M. C. De Silva, J. P. Sousa, C. A. van Gestel and J. Römbke. 2019. Environmental risk assessment of pesticides in tropical terrestrial ecosystems: test procedures, current status and future perspectives. Ecotoxicology and environmental safety, 181: 534-547.

Ferdosi, M. F., I. Haider Khan, A. Javaid, T. Sattar and A. Munir. 2021. Identification of antimicrobial constituents in essential oil from Paulownia fortunei flowers. Mycopath, 18: 53-57.

Ferdosi, M. F., I. Khan, A. Javaid and M. F. Fardosi. 2020. Bioactive components in methanolic flower extract of Ageratum conyzoides. Pakistan Journal of Weed Science, 27: 181-190.

Galt, R. E. and L. Asprooth. 2021. The effects of agrochemicals on humans, Handbook on the Human Impact of Agriculture. Edward Elgar Publishing, 297-332.

Ghaneian, M. T., M. H. Ehrampoush, A. Jebali, S. Hekmatimoghaddam and M. Mahmoudi. 2015. Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environmental Health Engineering and Management Journal, 2: 13-16.

Hasan, A., I. Artika and T. G. Kuswandi. 2014. Analysis of active components of Trigona spp. propolis from Pandeglang Indonesia. Global Journal of Biology, Agriculture & Health Science, 3: 215-219.

Jabeen, N., A. Javaid, A. Shoaib and I. H. Khan. 2021. Management of southern blight of bell pepper by soil amendment with dry biomass of Datura metel. Journal of Plant Pathology: 1-13.

Javed, S., Z. Mahmood, K. M. Khan, S. D. Sarker, A. Javaid, I. H. Khan and A. Shoaib. 2021. Lupeol acetate as a potent antifungal compound against opportunistic human and phytopathogenic mold Macrophomina phaseolina. Scientific Reports, 11: 1-11.

Jung, S. W., S. Thamphiwatana, L. Zhang and M. Obonyo. 2015. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PloS one, 10: e0116519.

Kengni, F., D. S. Tala, M. N. Djimeli, S. P. Fodouop, N. Kodjio, H. N. Magnifouet and D. Gatsing. 2013. In vitro antimicrobial activity of Harungana madagascriensis and Euphorbia prostrata extracts against some pathogenic Salmonella sp. International Journal of Biological and Chemical Sciences, 7: 1106-1118.

Khan, I. H. and A. Javaid. 2020. Antifungal activity and GC-MS analysis of n-butanol extract of quinoa (Chenopodium quinoa Willd) leaves. Bangladesh Journal of Botany, 49: 1045-1051.

Khan, I. H. and A. Javaid. 2020. Comparative antifungal potential of stem extracts of four quinoa varieties against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24: 441-446.

Kumar, P. P., S. Kumaravel and C. Lalitha. 2010. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal of Biochemistry Research, 4: 191-195.

Lee, W., E. R. Woo and D. G. Lee. 2016. Phytol has antibacterial property by inducing oxidative stress response in Pseudomonas aeruginosa. Free radical research, 50: 1309-1318.

Lupi, L., F. Bedmar, D. A. Wunderlin and K. S. B. Miglioranza. 2019. Levels of organochlorine pesticides in soils, mesofauna and stream water from an agricultural watershed in Argentina. Environmental Earth Sciences, 78: 1-9.

Mfarrej, M. F. B. and F. M. Rara. 2019. Competitive, sustainable natural pesticides. Acta Ecologica Sinica, 39: 145-151.

Murugan, K. and V. V. Iyer. 2014. Antioxidant activity and gas chromatographic-mass spectrometric analysis of extracts of the marine algae, Caulerpa peltata and Padina gymnospora. Indian journal of pharmaceutical sciences, 76: 548-552.

Naqvi, S. F., I. H. Khan and A. Javaid. 2020. Hexane soluble bioactive components of Chenopodium murale stem. Pakistan Journal of Weed Science Research, 26: 425-432.

Özbilgin, S. and G. S. ÇİTOĞL. 2012. Uses of some euphorbia species in traditional medicine in turkey and their biological activities. Turkish Journal of Pharmaceutical Sciences, 9: 241-255.

Pahlevani, A. H. and H. Akhani. 2011. Seed morphology of Iranian annual species of Euphorbia (Euphorbiaceae). Botanical journal of the Linnean Society, 167: 212-234.

Penduka, D., L. Buwa, B. Mayekiso, A. Basson and A. Okoh. 2014. Identification of the antiListerial constituents in partially purified column chromatography fractions of Garcinia kola seeds and their interactions with standard antibiotics. Evidence-Based Complementary and Alternative Medicine, 2014: 850347.

Ragasa, C. Y., K. Jorvina and J. A. Rideout. 2004. Antimicrobial compounds from Artocarpus heterophyllus. Philippine Journal of Science, 133: 97-101.

Rahuman, A. A., G. Gopalakrishnan, B. S. Ghouse, S. Arumugam and B. Himalayan. 2000. Effect of Feronia limonia on mosquito larvae. Fitoterapia, 71: 553-555.

Saha, M. and P. Bandyopadhyay. 2020. In vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16. Microbial pathogenesis, 141: 103977.

Schaller, H. 2003. The role of sterols in plant growth and development. Progress in lipid research, 42: 163-175.

Shaaban, M., M. Ali, M. F. Tala, A. Hamed and A. Z. Hassan. 2018. Ecological and phytochemical studies on Euphorbia retusa (Forssk.) from Egyptian Habitat. Journal of analytical methods in chemistry, 2018: 9143683.

Sharma, A. and E. Menghani. 2017. Antibiotic potentials and isolation of metabolomes from microorganisms of mesophilic soil of Rajasthan, India. African Journal of Microbiology Research, 11: 335-344.

Tchuenguem, R. T., J.-R. Kuiate and J. P. Dzoyem. 2017. In vivo Anticandidal Activity of Euphorbia prostrata. Journal of Complementary and Alternative Medical Research, 4: 1-10.

Tleuova, A. B., E. Wielogorska, V. P. Talluri, F. Štěpánek, C. T. Elliott and D. O. Grigoriev. 2020. Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. Journal of Controlled Release, 326: 468-481.

Tsuno, T., T. Niwano and Y. Kakui. 2016. Anti-Inflammatory agent containing sterol esters for use in cosmetics, quasi-drugs, pharmaceutical and health food. Jpn. Kokai Tokkyo Koho, JP, 2016196418.

Verheyen, J. and R. Stoks. 2019. Current and future daily temperature fluctuations make a pesticide more toxic: Contrasting effects on life history and physiology. Environmental Pollution, 248: 209-218.

Vurro, M., C. Miguel‐Rojas and A. Pérez‐de‐Luque. 2019. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest management science, 75: 2403-2412.

Yff, B. T., K. L. Lindsey, M. B. Taylor, D. G. Erasmus and A. K. Jäger. 2002. The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. Journal of Ethnopharmacology, 79: 101-107.




DOI: https://doi.org/10.33866/phytopathol.033.02.0707

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Malik F. H. Ferdosi, Iqra Haider Khan, Arshad Javaid, Muhammad Nadeem, Ayesha Munir

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.