Iis N. Asyiah, Dhania H. Tristaningtyas, Jekti Prihatin, Sugeng Winarso, Lenny Widjayanthi, Dwi Nugroho, Kurniawan Firmansyah, Ankardiansyah P. Pradana


Potato cyst nematode (Globodera rostochiensis) infection causes yield loss of up to 80%. Various attempts have been made to suppress their infection on potato. However, G. rostochiensis infection remains a problem that has not been fully resolved. One of the potential techniques to control their population is the use of biological control agents. In previous studies, we have succeeded to isolate 3 rhizobacteria (Bacillus sp.) and 1 endophytic bacterium (Pseudomonas dimunita) from the rhizosphere and root of the coffee plant. In this study, the bionematicide was formulated using four bacterial isolates and inexpensive materials. Bionematicides were tested for their effectiveness on land infected with G. rostochiensis (227 per 100 mL) of soil. We compared the effectiveness of the bionematicides at various doses. As a control, a common nematicide was employed. The bionematicide also reduced the number of cysts and the number of female nematodes in the field. Moreover, it also showed that the bionematicide was able to increase the height of potato plants. Bionematicide application also improved various potato growth parameters. The tested formula also increased the number of tubers per plant. The study demonstrated that the most effective and recommended bionematicide concentration was 4% for every 100 mL in each plant.


Bacillus; endophyte; formulation; Pseudomonas; rhizobacteria.

Full Text:



Abd El-Rahman, A., H. A. Shaheen, R. M. Abd El-Aziz and D. S. S. Ibrahim. 2019. Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egyptian Journal of Biological Pest Control, 29: 41-49.

Abel, S., C. A. Ticconi and C. A. Delatorre. 2002. Phosphate sensing in higher plants. Physiologia Plantarum, 115: 1-8.

Anjum, R., M. Afzal, R. Baber, M. A. J. Khan, W. Kanwal, W. Sajid and A. Raheel. 2019. Endophytes: as potential biocontrol agent—review and future prospects. Journal of Agriculture Science, 11: 113-125.

Asyiah, I., S. Wiryadiputra, I. Fauzi and R. Harni. 2015. Populasi Pratylenchus coffeae (Z) dan pertumbuhan bibit kopi Arabika akibat inokulasi Pseudomonas diminuta L. dan Bacillus subtilis (C.). Pelita Perkebunan, 31: 30-40.

Asyiah, I. N., J. Prihatin, A. D. Hastuti, S. Winarso, L. Widjayanthi, D. Nugroho, K. Firmansyah and A. P. Pradana. 2021. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodiversity Journal, 22: 3256-3264.

Asyiah, I. N., S. Soekarto, M. Hoesain, M. Iqbal, R. Hindersah, E. Narulita and I. Mudakir. 2018. The endophytic bacteria isolation as biological control agent of Pratylenchus coffeae. Asian journal of environmental science, 20: 165-171.

Banerjee, S. and N.C. Mandal. 2019. Diversity of chitinase-producing bacteria and their possible role in plant pest control. in: Satyanarayana, T., Das, S. K., John, B. N. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, 457-491.

Choudhary, D. K., and B. N. Johri. 2009. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological Research,164: 493-513.

Cronin, D., Y. Moënne-Loccoz, C. Dunne, and F. O’Gara. 1997. Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. European Journal of Plant Pathology, 103: 433-440.

Dandurand, L.M., I. A. Zasada, X. Wang, B. Mimee, W. D. Jong, R. Novy, J. Whitworth and J. C. Kuhl. 2019. Current status of potato cyst nematodes in North America. Annual Review of Phytopathology, 57: 117-133.

de Gonzalo, G., D. I. Colpa, M. H. Habib, and M. W. Fraaije. 2016.Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236: 110-119.

De Ruijter, F. and A. Haverkort. 1999. Effects of potato-cyst nematodes (Globodera pallida) and soil pH on root growth, nutrient uptake and crop growth of potato. European Journal of Plant Pathology. 105: 61-76.

Devine, K. J. and P. W. Jones. 2001. Effects of hatching factors on potato cyst nematode hatch and in-egg mortality in soil and in vitro. Journal of Nematology, 3: 65-74.

Djebroune, A., A. Mokabli, M. Hammache and G. Chakali. 2020. Effects of potato cyst nematodes on three potato varieties in Algeria. Pakistan Journal of Zoology, 52: 1341-1346.

Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability, 11: 3417.

Fiers, M., V. Edel-Hermann., C. Chatot, Y. L. Hingrat, C. Alabouvette and C. Steinberg. 2012. Potato soil-borne diseases a review. Agronomy for Sustainable Developmant. 32: 93-132.

Firdous, J., N. A. Lathif, R. Mona, and N. Muhamad. 2019. Endophytic bacteria and their potential application in agriculture: a review. Indian Journal of Agriculture and Research, 53: 1-7.

Forghani, F. and A. Hajihassani. 2020. Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Frontier in Plant Science, 11: 1125-1131.

Hadisoeganda, A. W. W. 2006. Nematoda sista kentang: kerugian, deteksi, biogeografi, dan pengendalian nematoda terpadu. Balai Penelitian Tanaman Sayuran, Lembang.

Hager, A. 2003. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research, 116: 483-505.

Hasanuzzaman, M., M. Bhuyan, K. Nahar, M. S. Hossain, J. A. Mahmud, M. S. Hossen, A. A. C. Masud, M. Moumita and M. Fujita, 2018. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8: 31.

Hodda, M. and D. Cook. 2009. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology, 99: 1387-1393.

Hussain, T. 2016. Potatoes: ensuring food for the future. Advances in Plants and Agricultural Research, 3: 178-182.

Igiehon, N. O. and O. O. Babalola. 2018. Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. International Journal of Environmental Research and Public Health, 15: 574.

Istifadah, N., N. Pratama, S. Taqwim, and T. Sunarto. 2018. Effects of bacterial endophytes from potato roots and tubers on potato cyst nematode (Globodera rostochiensis). Biodiversity Journal, 19: 47-51.

Kaczmarek, A., M. Back and V. Blok. 2019. Population dynamics of the potato cyst nematode, Globodera pallida, in relation to temperature, potato cultivar and nematicide application. Plant Pathology, 68: 962-976.

Khan, S. S., V. Verma and S. Rasool. 2020. Diversity and the role of endophytic bacteria: a review. Botanica Serbia, 44: 103-120.

Koch, M., M. Naumann, E. Pawelzik and H. Thiel. 2020. The importance of nutrient management for potato production Part I: plant nutrition and yield. Potato Research, 63: 97-119.

Leghari, S. J., N. A. Wahocho, G. M. Laghari, A. HafeezLaghari, G. MustafaBhabhan, K. H. Talpur, T. A. Bhutto, S. A. Wahocho and A. A. Lashari. 2016. Role of nitrogen for plant growth and development: a review. Advances in Environmental Biology, 10: 209-219.

Marathe, R., Y. Phatake, A. Shaikh, B. P. Shinde and M. H. Gajbhiye. 2017. Effect of IAA produced by Pseudomonas aeruginosa 6a (bc4) on seed germination and plant growth of Glycin max.

Journal of Experimental Biology and Agricultural Sciences, 5: 351-358.

Mburu, H., L. Cortada, S. Haukeland, W. Ronno, M. Nyongesa, Z. Kinyua, J. L. Bargul, and D. Coyne. 2020. Potato cyst nematodes: a new threat to potato production in East Africa. Frontier in Plant Sciences, 11: 670-.

Mehmood, U., M. Inam-ul-Haq, M. Saeed, A. Altaf, F. Azam and S. Hayat. 2018. A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Protection, 2: 77-82.

Merzaeva, O. and I. Shirokikh. 2010. The production of auxins by the endophytic bacteria of winter rye. Appl Biochemistry and Microbiology, 46: 44-50.

Mhatre, P. H., C. Karthik, K. Kadirvelu, K. L. Divya, E. P. Venkatasalam, S. Srinivasan, G. Ramkumar, C. Saranya, and R. Shanmuganathan. 2019. Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, 17: 119-128.

Molinari, S. and P. Leonetti. 2019. Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. PLoS One. 14: 0213230.

Morales-Cedeño, L. R., M. del Carmen Orozco-Mosqueda, P. D. Loeza-Lara, F. I. Parra-Cota, S. L. S. Santos-Villalobos and G. Santoyo. 2020. Plant growth-promoting bacterial endophytes as biocontrol agents of pre-and post-harvest diseases: fundamentals, methods of application and future perspectives. Microbiological Research, 242: 126612.

Morsomme, P. and M. Boutry. 2000. The plant plasma membrane H+-ATPase: structure, function and regulation. Biochim Biophys Acta Biomembr BBA-Biomembranes. 1465: 1-16.

Moussa, H. M. and N. Y. Solieman. 2016. Competitiveness of Egyptian potatoes in foreign markets. Advances in Environmental Biology, 10: 46-51.

Mulder, A. and A. Van der Wal. 1997. Relationship between potato cyst nematodes and their principal host. I. A literature review. Potato Research, 40: 317-326.

Muraro, D., H. Byrne, J. King, and M. Bennett. 2013. The role of auxin and cytokinin signalling in specifying the root architecture of Arabidopsis thaliana. Journal of Theoretical Biology, 317: 71-86.

Mustika, I. 2005. Konsepsi dan strategi pengendalian nematoda parasit tanaman perkebunan di Indonesia. Perspektif. 4: 20-32.

Oosterhuis, D. M., D. A. Loka, E. M. Kawakami and W. T. Pettigrew, 2014. The physiology of potassium in crop production. Advances in Agronomy, 126: 203-233.

Patil, N. N., S. Jadhav, S. S. Ghorpade, and A. B. Sharma. 2013. Isolation and enrichment of sugar press mud (SPM) adapted microorganism for production of biofertilizer by using sugar press mud. International Journal of Advanced Biotechnology Research, 14: 96-104.

Postma, J., E. Nijhuis, and E. Someus. 2010. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Applied Soil Ecology, 46: 464-469.

Poveda, J., P. Abril-Urias, and C. Escobar. 2020. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontier in Microbiology, 11: 992.

Price, J. A., D. Coyne, V. C. Blok and J. T. Jones. 2021. Potato cyst nematodes Globodera rostochiensis and G. pallida. Molecular Plant Pathology, 22: 495-507.

Rafi, M. M., M. Krishnaveni and P. Charyulu. 2019. Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In: Buddola, V. (ed) Recent Developments In Applied Microbiology and Biochemistry. Elsevier, 223-233.

Rayle, D. L., and Cleland, R. 1977. Control of plant cell enlargement by hydrogen ions. Current Topics in Developmental Biology, 11: 187-214.

Rehman, F. U. 2021. Cyst Nematode and its impacts on soybean and potato: a review. Acta Science Biotechnology, 2: 17-22.

Rose, I. M. and H. Vasanthakaalam. 2011. Comparison of the nutrient composition of four sweet potato varieties cultivated in Rwanda. American Journalof Food Nutrition, 1: 34-38.

Rosyidah, A., T. Wardiyati, A. L. Abadi, D. Maghfoer, and L. Q. Aini. 2014. Induced resistance of potato (Solanum tuberosum L.) toward Ralstonia solanacearum disease with combination of several bio-control microbes. Journal of Biology, Agriculture and Healthcare, 4: 90-98.

Satyaprakash, M., T. Nikitha, E. Reddi, B. Sadhana and S. S. Vani. 2017. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences, 6: 2133-2144.

Sawicka, B., W. Michałek and P. Pszczółkowski. 2015. The relationship of potato tubers chemical composition with selected physiological indicators. Zemdirbyste-Agriculture, 102: 41-50.

Shahid, M., M. Iqbal, S. Ijaz-Ul-Hassan, M. Anwar-ul-haq, M. M. Hussain, S. Siddiq and M. A. Qureshi. 2019. Studies on the detection of potato cyst nematode (Globodera spp.) and soil health status in potato core areas of Punjab, Pakistan. Plant Protection, 3 : 21-28.

Sidhu, H. S. 2018. Potential of plant growth-promoting rhizobacteria in the management of nematodes: a review. Journal of Entomology and Zoology studies.6: 1536-1545.

Sivasakthi, S., G. Usharani and P. Saranraj. 2014. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. African Journal of Agriculture and Research, 9: 1265-1277.

Soumare, A., K. Boubekri, K. Lyamlouli, M. Hafidi, Y. Ouchdouch and L. Kouisni. 2020. From isolation of phosphate solubilizing microbes to their formulation and use as biofertilizers: status and needs. Frontier in Bioengineering and Biotechnology, 7: 425.

Subedi, P., K. Gattoni, W. Liu, K. S. Lawrence, and S. W. Park. 2020. Current utility of plant growth-promoting rhizobacteria as biological control agents towards plant-parasitic nematodes. Plants, 9: 1167.

Sukhomlin, K., V. Koshirets, M. Zinchenko, Y. V. Biletskiy and O. P. Zinchenko. 2019. The current state of the population of the golden potato cyst nematode Globodera rostochiensis (Nematoda, Heteroderidae) in the northwest of Ukraine. Biosystems Diversity, 27: 33-38.

Taiz, L. 1984. Plant cell expansion: regulation of cell wall mechanical properties. Annual Review in Plant Physiology, 35: 585-657.

Tian, B., J. Yang and K.Q. Zhang. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecology, 61: 197-213.

Veliz, E. A., P. Martínez-Hidalgo and A. M. Hirsch. 2017. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3: 689.

Widianto, D., A. D. Pramita, I. Kurniasari, N. A. Arofatullah, I. D. Prijambada J. Widada and S. Indarti. 2021. Bacillus is one of the most potential genus as a biocontrol agent of golden cyst nematode (Globodera rostochiensis). Arch Phytopathology and Plant Protection, 54: 2191-2205.

Yousif, A., A. Munif, and K. H. Mutaqin. 2017. Evaluating the toxicity of secondary metabolites of endophytic bacteria from Jatropha curcas L. to suppress Meloidogyne spp. in vitro. International Journal of Science and Research, 6: 2195-2199.



  • There are currently no refbacks.

Copyright (c) 2022 Iis Nur Asyiah, Dhania Hari Tristaningtyas, Jekti Prihatin, Sugeng Winarso, Lenny Widjayanthi, Dwi Nugroho, Kurniawan Firmansyah, Ankardiansyah Pandu Pradana

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.